First shapes

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

square

triangle
diamond
(rhombus)
diamond
(rhombus)

circle
oval

rectangle

parallelogram

hexagon

Basic shapes

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Two-dimensional (2D) shapes are plane or flat shapes, having only the two dimensions of length and breadth (width).

circle

semicircle

quadrant

ellipse

Polygons - plane shapes having three or more straight sides.
triangles - 3 sides

equilateral

isosceles

right-angled

scalene
quadrilaterals $\mathbf{- 4} \mathbf{~ s i d e s}$

square

rhombus

trapezoid (US)

Regular polygons have all sides and angles equal.

pentagon
hexagon heptagon
octagon nonagon decagon
© Jenny Eather. All rights reserved.
Educational reference material for non-commercial use only.

Circle

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A circle is a plane shape bounded by a continuous line which is always the same distance from the centre.

Circle terminology

A semicircle is half of a circle, bounded by the diameter and an arc.

Circumference The distance around a circle. Radius The distance from the centre of a circle to the circumference. Half the diameter. Diameter A straight line passing through the centre of a circle to touch both sides of the circumference. Twice as long as the radius. Chord A straight line joining two points on the circumference of a circle. The diameter is a special kind of chord.
Arc A section of the circumference.
Sector A section of a circle, bounded by two radii and an arc.
Segment A section of a circle, bounded by a chord and an arc.
Tangent A straight line touching the circumference once at a given point.

A quadrant is a quarter of a circle or its circumference.

Circumference of a circle.

Area of a circle.

$$
C=2 \pi \mathrm{r}
$$

$$
A=\pi r^{2}
$$

(circumference $=2 \times \pi \times$ radius)
(area $=\Pi x$ radius \times radius)
$\mathrm{pi}=$ ratio of the circumference of a circle to its diameter.
$=\frac{22}{7}$ or 3.14 to 2 decimal places.

Square

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

A square is a quadrilateral with:

- four equal sides and four right angles
- opposite sides that are parallel
- two diagonals that bisect at right angles
- four lines of symmetry.

Attributes of a square

four
equal sides

four right angles

opposite sides that are parallel

Perimeter of a square.

two diagonals that bisect at right angles

four lines of symmetry

Depending on their definitions as quadrilaterals, a square can be a: Rectangle:

- two pairs of opposite equal parallel sides and four right angles. Parallelogram:
- two pairs of opposite equal parallel sides and opposite angles that are equal. Rhombus:
- parallelogram with four equal sides and opposite angles that are equal. Trapezium (UK) trapezoid (US):
- quadrilateral with at least two sides parallel. (inclusive definition)

Polygons

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A polygon is a plane, two-dimensional or flat shape having three or more straight sides.

Examples

$\begin{aligned} & \text { SOME SIMPLE } \\ & \text { POLYGON } \\ & \text { TYPES } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Sides } \\ \text { and } \\ \text { vertices } \end{array}$	$\begin{array}{\|c\|} \hline \text { Sum of of } \\ \text { internal } \\ \text { angles } \end{array}$	REGULAR All sides and angles equal.	IRREGULAR
triangles	3	180°		
quadrilaterals	4	$360{ }^{\circ}$		
pentagons	5	540°		\square N
hexagons	6	720°		
heptagons	7	900°		\square ®
octagons	8	1080°		
nonagons	9	1260°		$0<9$
decagons Cow	10	$1440{ }^{\circ}$		

NOTE: A trapezium (UK), trapezoid (US) is a quadrilateral with one pair of parallel sides.

Classifying polygons

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A polygon is a plane, two-dimensional or flat shape having three or more straight sides.
There are several ways polygons may be classified.

Simple

Complex

In a simple polygon the sides do not cross over each other. In a complex polygon the sides do cross over and the polygon is called self-intersecting.

Regular

Irregular

A regular polygon has all sides equal and all angles equal. An irregular polygon is not regular.

Convex

Concave

A convex polygon has no reflex angles. A concave polygon has at least one reflex angle (an angle larger than 180°).

A geometric figure is concave if any line segment that joins two interior points goes outside the figure.

Regular polygons

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Regular polygons	No. of sides and vertices	No. of angles	Size of interior angles	No. of lines of symmetry	Order of rotational symmetry	No. of diagonals
equilateral triangle	3	3	60°	3	3	0
square	4	4	90°	4	4	2
pentagon	5	5	108°	5	5	5
hexagon	6	6	120°	6	6	9
heptagon	7	7	$128.6{ }^{\circ}$	7	7	14
octagon	8	8	135°	8	8	20
nonagon	9	9	140°	9	9	27
decagon	10	10	144°	10	10	35

Triangles

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A triangle is a polygon with three sides and three angles.
The total of the angles in any triangle is 180°.

An equilateral triangle has 3 equal sides and three equal angles of 60°.

Types of triangles

obtuse triangles

- one obtuse angle (more than 90°). acute triangles - three acute angles (less than 90°). right-angled triangles - one right angle of 90°.

Altitude of a triangle.

The perpendicular distance from the vertex of a triangle to the opposite side.

Area of a triangle.

© Jenny Eather. All rights reserved.

Quadrilaterals

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

A quadrilateral is a polygon with four sides

 and four vertices or corners. The total of the angles in any quadrilateral is 360°.
Having four sides and vertices

irregular quadrilateral (UK) trapezium (US)

kite

concave quadrilateral

complex quadrilateral

PLUS at least one pair of parallel sides

trapezium (UK), trapezoid (US)

OR two pairs of parallel sides

parallelogram

PLUS four equal sides AND diagonals that bisect at right angles

rhombus

square
A square shares attributes with many of the quadrilaterals above it.

PLUS four right angles

rectangle

Diagonals

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A diagonal is a line joining two non-adjacent vertices or corners of a polygon.

POLYGONS	No. of sides	No. of angles	No. of vertices	No. of diagonals
triangles	3	3	3	0
quadrilaterals \square	4	4	4	2
pentagon	5	5	5	5
hexagon \quad	6	6	6	9
heptagon	7	7	7	14
octagon	8	8	8	20
nonagon	9	9	9	27
decagon	10	10	10	35

Formula for calculating diagonals.

$$
\mathrm{d}=\frac{\mathrm{n}(\mathrm{n}-3)}{2}
$$

d = diagonals
$\mathrm{n}=$ number of vertices

EXAMPLE: decagon with 10 vertices

$$
\begin{aligned}
& d=10 \times(10-3) \div 2 \\
& d=(10 \times 7) \div 2
\end{aligned}
$$

$d=70 \div 2$
d $=35$

Area

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Area is the size a surface takes up measured in square units. Area can be determined using a grid or a formula.

Using a grid

The squares are counted to find an area.

$$
\begin{array}{rlrl}
A & =\text { area } \\
l & =\text { length } \\
b & =\text { base } \\
h & =\text { height } & & \text { Using a formula } \\
r & =\text { radius } \\
\pi & =\text { pi } & \text { Square } & A=\pi x r^{2} \\
& A=l x l
\end{array}
$$

Rectangle and
$A=b \times h$ Parallelogram

Triangle

$$
A=\frac{1}{2} b \times h
$$

Perimeter

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Perimeter is the distance around the outside of a shape.

Adding the length of sides

The perimeter of a polygon is the sum of the length of all its sides.

The perimeter of a regular polygon is the number of sides multiplied by the length of one side.

$$
P=n \times l
$$

$n=$ number of sides

© Jenny Eather. All rights reserved.

Symmetry

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
There are two types of symmetry, reflective symmetry and rotational symmetry.

Reflective Symmetry

A shape is symmetrical if one half is a mirror image of the other half when it is reflected across a line of symmetry.

Rotational Symmetry

A shape has rotational symmetry if, when it is turned around its centre point, it matches its original outline more than once.
The order of rotational symmetry is the number of times it matches in one full rotation.

This shape has rotational symmetry of order 8.

> Regular Polygons

The number of lines of symmetry and the order of rotational symmetry of any regular polygon is equal to the number of sides.

© Jenny Eather. All rights reserved.
Educational reference material for non-commercial use only.

Tessellations, tilings

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A tessellation or tiling is a pattern of shapes that fits together without any gaps.

Examples

Congruent shapes are shapes of exactly the same shape and size. Congruent shapes that tessellate include:

squares

rectangles

equilateral triangles

hexagons

Shapes that will not tessellate

circles

ellipses

Interesting tilings

rhombille tiling

floret pentagonal tiling

Research Topic: The art of M. C. Escher.

Transformations

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A transformation of a shape is a change in position without changing shape or size, except for a dilation, where the size but not the shape changes.

reflection ... flip

In a reflection a shape is flipped over a mirror line to face the opposite direction.

translation ... slide

In a translation or slide a shape is moved in any direction.

rotation ... turn

In a rotation a shape is turned around a centre point.
dilation ... zoom
In a dilation a shape is enlarged or reduced

First solids

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

sphere

ball

cube

dice

cone
double cone

prism

cylinder

can

box

pyramid

Basic solids

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Solid (3D) shapes are three-dimensional shapes having length, breadth and height.

Examples

cube

Prisms

triangular prism

square prism

rectangular prism

hexagonal prism

octagonal prism

Pyramids

triangular pyramid

square rectangular pyramid

pyramid

pentagonal
pyramid

hexagonal
pyramid

octagonal
pyramid

Platonic solids

tetrahedron

cube

octahedron

icosahedron

Sphere

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A sphere is a three-dimensional solid that is perfectly round. All points on the surface of a sphere are the same distance from its centre.

Sections cut out of a solid sphere.

Surface area of a sphere

Volume of a sphere

$r=$ radius

Pi

pi = ratio of the circumference of a circle to its diameter.
$=\frac{22}{7}$ or 3.14 to 2 decimal places.

Educational reference material for non-commercial use only.

Cube

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

A cube is a three-dimensional solid that has six congruent square faces.

A cube has 6 square faces, 12 equal edges and 8 vertices.

Surface area of a cube

Volume of a cube

$6 b^{2}$ OR $6 \times b^{2}$
$b^{3} O R \quad \mathbf{b x b x b}$
$b=$ length of one edge
Platonic solid

A cube is one of the five Platonic solids.

Cone

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A cone is a three-dimensional solid with a circular base and a curved surface that tapers to a point (vertex or apex).

Surface area

Volume

Right cone

Frustum of a cone

A cone where the axis line from the vertex to the centre of the base is perpendicular (at right angles) to the base.

The solid that results from a cone having its top sliced off parallel to its base.

Cylinder

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A cylinder is a three-dimensional solid with one curved surface and two congruent circular or elliptical bases.

base

curved surface

Surface area of a cylinder
$2 \pi r h+2 \pi r^{2}$
$r=$ radius
Right cylinders

- cylinders with bases aligned one directly above the other.

Volume of a cylinder

$$
\pi r^{2} h
$$

h = height

Oblique cylinders

- cylinders with bases that are not aligned one directly above the other.

Truncated cylinders

Prisms

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
A prism is a three-dimensional solid with two identical, parallel bases. All lateral faces are parallelograms.

Examples

rectangular

triangular prism
square prism

rectangular prism
pentagonal hexagonal prism

octagonal prism

All cross-sections made parallel to the bases are the same.

Right prisms

Right prisms have bases that are aligned one directly above the other.

Oblique prisms
Oblique prisms have bases that are NOT aligned with one directly above the other.

In a right prism the lateral faces are rectangles.

Prism names

A prism takes its name from the shape of its base, e.g. square prism, triangular prism, hexagonal prism.

triangle square rectangle

Pyramids

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

A pyramid is a three-dimensional solid with

 a polygon as a base and triangular faces that taper to a point (vertex).

Examples

triangular

triangular pyramid

rectangular
square pyramid

pyramid

hexagonal pyramid

Volume

b = length base side I = length base to vertex $h=$ perpendicular height

- of a square pyramid.

Surface area

$2 b l+b^{2}$

Frustum of a pyramid

Pyramid names
A pyramid takes its name from the shape of its base, e.g. square pyramid, hexagonal pyramid.

triangle
square rectangle

pentagon hexagon

octagon © Jenny Eather. All rights reserved.

Platonic solids

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
The Platonic solids are the five regular polyhedra with faces made from congruent regular polygons and the same number of edges meeting at each vertex.

Platonic solids	No. of faces	No. of vertices	No. of edges	Nets
tetrahedron	4	4	6	
cube	6	8	12	
octahedron	8 -	6	12	
dodecahedron	12	20	30	
icosahedron	20	12	30	

These five regular polyhedra were described by the ancient Greek philosopher and mathematician Plato in 350 BC.

Faces, vertices, edges, nets

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Polyhedra	Base	No. of faces	No. of vertices	No. of edges	Nets
cube		6	8	12	\square
triangular prism	N	5	6	9	
square prism		6	8	12	
rectangular prism		6	8	12	
pentagonal prism		7	10	15	
hexagonal prism		8	12	18	
octagonal prism	\square	10	16	24	
triangular pyramid		4	4	6	
square pyramid		5	5	8	
rectangular pyramid		5	5	8	
pentagonal pyramid		6	6	10	
hexagonal pyramid		7	7	12	
octagonal pyramid		9	9	16	

Views, cross-sections

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Polyhedra		Views		Cross-sections	
		base or top	side or lateral	parallel to base	oblique
cube					
triangular prism		\wedge		N	
square prism					
rectangular prism		\square		\square	
pentagonal prism					
hexagonal prism				\square	
octagonal prism					
triangular pyramid					
square pyramid					
rectangular pyramid		-	1	\square	\square
pentagonal pyramid					
hexagonal pyramid				,	
octagonal pyramid				\bigcirc	

Uniform cross-sections are parallel to, and the same size and shape, as the base.

Uniform

Not uniform

Surface area, volume

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Surface area

The total area of the surface of a three-dimensional object, measured in square units.

Volume

The amount of space occupied by a three-dimensional object, measured in cubic units.

Cube
$6 b^{2}$
$b=$ base length
Rectangular prism

2lw + 2lh + 2wh

Iwh

I = length w = width h = height
$3 l w+w h$

Triangular prism

I = length
w = width
$h=$ height
Iwh
2

$2 b l+b^{2}$
b = length base side I = length base to vertex $h=$ perpendicular height

Sphere

Lines

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Types of lines	Name	Description
	line	A straight one-dimensional figure of infinite length.
	horizontal line	Line parallel to the horizon.
	oblique line	Line at an angle to the horizon.

Angles

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

An angle is the amount of turning between

 two lines meeting at a common point. The lines are called arms and the point is called a vertex.
Names of angles

Acute angle	Right angle	Obtuse angle
less than 90°		between 90° and 180°
Straight angle	Reflex angle	A revolution
	between 180° and 360°	

Regular polygons

		square	rectangle pentagon			
Total angles	180°	360°	$360{ }^{\circ}$	540°	720°	1080°
Interior angles	60°	90°	90°	108°	120°	135°
Exterior angles	120°	90°	90°	72°	60°	45°

All angles in a triangle add up to 180°.
All angles in a quadrilateral add up to 360°.

Angle pairs

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { Adjacent } \\ \text { angles }\end{array} & \begin{array}{c}\text { Complementary } \\ \text { angles }\end{array} & \begin{array}{c}\text { Supplementary } \\ \text { angles }\end{array} \\ \hline \begin{array}{c}\text { Angles immediately } \\ \text { next to each other. }\end{array} & \begin{array}{c}\text { Two angles whose } \\ \text { sum is } 90^{\circ} .\end{array} & \text { Two angles whose } \\ \text { sum is } 180^{\circ} .\end{array}\right]$

Vertically opposite angles

Opposite pairs of angles formed when two lines intersect.

Opposite angles are equal.

Interior, exterior angles

Angles inside or outside of polygons or parallel lines.

The exterior angles of a polygon total 360°.

Angles associated with parallel lines and transversals

Interior angles
ce, df
Alternate interior angles
c f, de
Exterior angles
a g , b h
Alternate exterior angles
a h, b g
Corresponding angles ae, c g,b f, d h

- inside the parallel lines
- same side of the transversal
- inside the parallel lines
- opposite sides of the transversal
- outside the parallel lines
- same side of the transversal
- outside the parallel lines
- opposite sides of the transversal
- one inside, one outside of the parallel lines
- same side of the transversal

Measuring angles

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsolictionaryforkids.com
Angles are measured in degrees with an instrument called a protractor. Protractors may be circular, a full rotation of 360°, but many are a semi-circle of 180°.

Placement

The crosshairs of the protractor need to be exactly lined up with the vertex of the angle. The vertex is the point where the two rays of the angle meet.

The protractor has two scales from 0° to 180°. Which scale to use depends on whether the angle is acute (less than 90°) or obtuse (90° to 180°).

First position words

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Position words describe where something or someone is compared to another object or their surroundings.

The dolphin is above the diver.
The shell is below the diver.
The clownfish is in front of the diver.
The turtle is behind the diver.
The angelfish is to the left of the diver.
The parrotfish is to the right of the diver.
The diver is between the fish.

Coordinates

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Coordinates are used to show position on a grid, map or coordinate plane. They are shown as pairs of letters and numbers or pairs of numbers, for example, B4 or $(2,4)$.

Grids and maps

The first coordinate is the horizontal position on the x axis.

The second coordinate is the vertical position on the y axis.

A	$(-4,3)$
B	$(-1,1)$
C	$(1,2)$
D	$(3,3)$
E	$(-3,-1)$
F	$(-2,-3)$
G	$(2,-1)$
H	$(3,-2)$

The order used to represent the coordinates is important so they are called ordered pairs.

Compass points

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Directions may be determined using a magnetic compass, an instrument containing a magnetized needle that points to earth's magnetic north.

Compass points

There are four main points of the compass: north $\left(0^{\circ}\right)$, east $\left(90^{\circ}\right)$, south $\left(180^{\circ}\right)$ and west $\left(270^{\circ}\right)$.
Directions halfway between these points are called north east, north west, south east and south west.

Pirate Island

- Shark Bay is north of Turtle Cove.
- Dolphin Bay is west of Terrible Rocks
- Lookout Hill is north east of the pirate flag.
- Beak Head is north west of the pirate flag.
- Palm Cove is south east of the pirate flag.
- Fort Hope is south west of the pirate flag.
© Jenny Eather. All rights reserved.

